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Linear stability analysis of retrieval state in associative memory neural
networks of spiking neurons

Masahiko Yoshioka*
Brain Science Institute, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan

~Received 5 August 2002; published 30 December 2002!

We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which
multiple periodic spatiotemporal patterns of spike timing are memorized as limit-cycle-type attractors. In
encoding the spatiotemporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asym-
metric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part
of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase
transition due to the loss of the stability of periodic solution is observed when we assume fasta function for
direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ
Floquet theory in which the stability problem of the infinite number of spiking neurons interacting witha
function is reduced to the eigenvalue problem with the finite size of matrix. Numerical integration of the
single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point
of the phase transition with a high degree of precision.
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I. INTRODUCTION

Synchronized firing of neurons is a ubiquitous pheno
enon in real nervous systems, and capability of synchroni
of neurons for information processing has been the subjec
many research papers@1–11#. It has been revealed that re
peating firing patterns of pyramidal neurons appear in sh
waves of rat hippocampus@12#. This result of experimen
suggests the possible role of spatiotemporal patterns of s
timing in encoding information in a real nervous syste
Associative memory neural networks that memorize s
tiotemporal patterns of spike timing are essential for und
standing this information processing of spike timing.

Much of the fundamental concepts of associative mem
neural networks have been developed by replica calcula
of Ising spin neural networks with the energy function@13–
15#. In these neural networks, the standard type of Hebb
is assumed to define symmetric synaptic connections, w
bring about fixed-point-type attractors. These fixed-poi
type attractors are, however, useless for encoding spatio
poral patterns. Asymmetric synaptic connections play a
nificant role in encoding spatiotemporal patterns, and t
the question arises about the learning rule that defines as
metric synaptic connections so that the network functions
associative memory for spatiotemporal patterns. When
assume synchronous update rule for the dynamics of
neural networks, a simple extension of the Hebb rule rea
realizes associative memory for spatiotemporal patterns@16#.
Nevertheless, the problem becomes rather difficult when
assume asynchronous update rule for spin neural netwo
Complicated learning rules are required to control the c
tinuous transition of network state in sequential retrieval
spatial patterns@17,18#.

In spin neural networks@19–21#, as well as analog neura
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networks@22–29#, state variables of neurons are assumed
represent their firing rate. In neural networks of phase os
lators, phase variables are used to represent synchron
firing of neurons. The synaptic connections of Hermitian p
mits networks of oscillators to memorize spatiotemporal p
terns of phase differences. Since some theoretical techni
are available for the analysis of phase oscillators, the pr
erties of networks of oscillators have been investigated
tensively @30–35#. Even in the presence of white noise
well as heterogeneity of oscillators we can derive the stor
capacity of networks of oscillators analytically@9#.

Nevertheless, networks of oscillators may possibly offe
distorted interpretation of synchronized firing in the real n
vous system unless interactions among neurons are s
ciently weak. To provide a real understanding of the inf
mation processing of spike timing, we must adopt mo
biologically plausible models of neural networks. For th
purpose, neural networks of spiking neurons are conside
to be suitable models for investigation, though it remains
unsolved problem to find adequate learning rule for s
tiotemporal patterns of spike timing. Since asymmetric s
aptic connections bring about sequential firings of spik
neurons@36,37#, one may consider that asymmetric synap
connections are essential for associative memory neural
works of spiking neurons. In fact, incorporating asymmet
synaptic connections, Gerstneret al. have succeeded in en
coding a few spatiotemporal patterns in networks of spik
neurons with discrete time dynamics@6#.

The spike-timing-dependent synaptic plasticity found
electrophysiological experiments excites a good deal of
terest in this connection. It has been revealed that the m
fication of excitatory synaptic weight depends on the prec
timings of presynaptic and postsynaptic firings@38–40#.
Synaptic weight is found to increase if firing of a presynap
neuron occurs in advance of firing of a postsynaptic neur
and to decrease otherwise. The spike-timing-dependent
aptic plasticity is described by the time window with th
negative part as well as the positive part~Fig. 1!, and this
©2002 The American Physical Society13-1
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asymmetric shape of the time window has been attractin
growing interest of reseachers@41–48#. Since the asymmet
ric time window brings about asymmetric synaptic conn
tions, the spike-timing-dependent synaptic plasticity
thought to be advantageous to encode spatiotemporal
terns. In a previous study, we have studied associa
memory neural networks of spiking neurons in which t
asymmetric time window of the spike-timing-dependent s
aptic plasticity is used to encode multiple periodic spatiote
poral patterns of spike timing@10#. We have assumed ne
works of the Hodgkin-Huxley neurons interacting throu
direct synaptic interaction, as well as indirect synaptic int
action intermediated by firings of interneurons. In the p
cess of memory retrieval, the indirect interactions bri
about the oscillatory inhibitory electric currents, which reg
late spike timings of neurons as in the case of gamma
ripple oscillations@49–51#. In order to elucidate the station
ary properties of these retrieval state we have derived
periodic solution for retrieval state analytically, and then
have shown that if the area of the negative part of the t
window is equivalent to the positive part, crosstalk amo
encoded patterns vanishes. This theoretical result implies
outstanding nature of the spike-timing-dependent syna
plasticity for encoding multiple spatiotemporal patterns.

In our previous study, however, we did not carry out
stability analysis for the retrieval state, and hence it remai
unclear whether the derived retrieval states are stable or
We investigate the same models of neural networks als
the present study, but we assume that thea function of the
direct interaction decays much faster than the previous o
Then, we find the phase transition due to the loss of
stability of retrieval state. In order to evaluate the critic
point of this phase transition we consider employing Floq
theory. Nevertheless, the degree of freedom of the pre
system is infinite, and the naive application of Floquet the
yields the eigenvalue problem with the infinite size of m
trix. Furthermore,a-function we assume here exhibits th
infinite long-time influence, and its treatment may also
quire the infinite size of matrix@52#. Without calculating the
explicit form of the matrix, Bressloff and Coombes ha
investigated the stability of some periodic solutions in n
works of integrate-and-fire neurons@53#, though its applica-

FIG. 1. The shape of the time windowW(Dt) with tW,1

525 msec andtW,252.5 msec. The modification of synapt
weight is written asDJ}W(Dt), whereDt5tpost2tpre denotes the
time difference between the postsynaptic and presynaptic firing
06191
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tion to other neuron models, such as the FitzHugh-Nagu
neurons and the Hodgkin-Huxley neurons, seems to be
ited.

In the present study, we employ two theoretical tec
niques to reduce the size of the matrix for Floquet theory.
first take the limit of the infinitely large number of neuron
which reduces the stability problem ofN neurons into the
problem ofQ sublattices. Then, we define some addition
variables for each sublattice and evaluate the infinite lo
time influence ofa function with the finite size of the matrix
The explicit value of the matrix is calculated from the n
merical integration of the single-body dynamics. Therefo
we can explicitly obtain the eigenvalues of the matrix, whi
enables us to determine the critical point of the phase tr
sition with a high degree of precision, even when we assu
networks of Hodgkin-Huxley neurons.

The present paper is organized as follows. In Sec. II,
present the dynamics of neural networks of spiking neuro
and then introduce the spike-timing-dependent learning
for associative memory. In Sec. III, we derive the retriev
state analytically in the limit of the infinite number of neu
rons. After that, the stability of this retrieval state is analyz
by Floquet theory in Sec. IV. In Sec. V, we illustrate th
typical behavior of network in the process of memory r
trieval. The results of numerical simulations are presen
and compared with the theoretical results. In Sec. VI,
discuss the phase transition due to the loss of the stab
based on the stability analysis in Sec. IV. In Sec. VII, w
investigate the case of slowa function, with which we find
two separated retrieval phases. In one of these retrie
phases, neurons obtain the large size of the oscillatory inh
tory synaptic electric currents, which well regulate the sp
timing of neurons. Finally, in Sec. VIII, we give a brief sum
mary and discuss the biological implication of the pres
study.

II. ASSOCIATIVE MEMORY NEURAL NETWORKS
OF SPIKING NEURONS

A. Network dynamics

In a real nervous system, many regions such as the n
cortex and hippocampus are found to comprise a large n
ber of pyramidal neurons as well as interneurons. Our in
est in the present study lies in spike timing of pyramid
neurons, and we denote the dynamics ofN pyramidal neu-
rons by a set of nonlinear differentail equations of the fo

v̇ i5 f ~v i ,wi1 , . . . ,win!1I i , ~1!

ẇil 5gl~v i ,wi1 , . . . ,win!,

l 51, . . . ,n, i 51, . . . ,N ~2!

with

I i5I PP,i1I IP1I EXT,i , ~3!

wherev i denotes membrane potential and auxiliary variab
wil are used to describe gating of ion channels. Syna
electric currentsI i denote interaction among neurons, and t
3-2



te

t
ar

t
im

r-
e

-
d
fo
e
fi
o

nt
c
ry

ve
en
ec
m

l

all
f

ed

of

n

od-
rns
e
tion

is-
r

et

po-
ve
ex-
ptic
nd

d
e of

LINEAR STABILITY ANALYSIS OF RETRIEVAL . . . PHYSICAL REVIEW E 66, 061913 ~2002!
definitions of three currents included inI i will be given
later. For the dynamics f (v i ,wi1 , . . . ,win) and
gl(v i ,wi1 , . . . ,win), many authors assume the integra
and-fire equation, the FitzHugh-Nagumo equations@54,55#,
the Hodgkin-Huxley equations@56#, and so on. In the presen
study we choose the Hodgkin-Huxley equations, which
summarized in Appendix A.

The synaptic electric currentI PP,i in I i expresses the direc
interaction among pyramidal neurons. We define spike t
ing of neuroni as the time when the membrane potentialv i
exceeds the threshold valueu50. Denotingk-th spike tim-
ing of neuroni by t i(k), we define the currentI PP,i as

I PP,i5APP(
j 51

N

Ji j (
k

SPP@ t2t j~k!#, ~4!

where Ji j represents the synaptic weight, anda function
SPP(t) is defined as

SPP~ t !5H 0 for t,0,

1

tPP,12tPP,2
~e2t/tPP,12e2t/tPP,2! for 0<t.

~5!

The constantAPP is used to control the intensity of the cu
rent I PP,i . In the following section, we will investigate th
case of the fasta function SPP(t) with tPP,153 msec and
tPP,250.3 msec as well as the slowa function SPP(t) with
tPP,1520 msec andtPP,252 msec.

The synaptic electric currentI IP in I i expresses the indi
rect interaction among pyramidal neurons that is interme
ated by firings of interneurons. Since the threshold value
firing of interneurons is rather small, we assume that wh
one pyramidal neuron fires, interneurons surrounding the
ing pyramidal neuron immediately fire. Then, these firings
interneurons bring about inhibitory synaptic electric curre
in all pyramidal neurons, because interneurons are conne
to pyramidal neurons via inhibitory synapses. This inhibito
synaptic electric currentI IP , which is independent of indexi,
is written as

I IP5AIP(
j

K(
k

SIP@ t2t j~k!#, ~6!

wherea function SIP(t) is defined as

SIP~ t !5H 0 for t,0,

21

t IP,12t IP,2
~e2t/t IP,12e2t/t IP,2! for 0<t.

~7!

We setK51/N for proper scaling. The constantAIP is used
to control the intensity ofI IP , and the constantst IP,1 andt IP,2
are always taken to be 10 msec and 1 msec, respecti
The functionSIP(t) takes a negative value so as to repres
the inhibitory nature of the connection. Note that we negl
the detailed dynamics of interneurons and simply assu
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that the inhibitory currentsI IP are induced in all pyramida
neurons immediately after one pyramidal neurons fires@57#.

The currentI EXT,i in I i is used to control initial firings of
neurons. For the initial condition of the network, we set
state of neuron (v i ,$wil %) to be at the stable fixed point o
the dynamics~1! and~2! with I i50. Since all neurons keep
quiescent without any external stimuli, we use the puls
form of the external electric currentI EXT,i to invoke initial
firings, which act as a trigger for information processing
the present model. The detailed definition ofI EXT,i will be
given in Sec. V. Note that the currentI EXT,i is applied only in
the beginning of the dynamics~1! and~2!. In the theoretical
analysis below we always setI EXT,i50 because we focus o
the stationary state in this analysis.

B. Spike-timing-dependent learning rule

We investigate associative memory neural network m
els that memorize multiple periodic spatiotemporal patte
of spike timing. P periodic spatiotemporal patterns to b
memorized are generated randomly according to the equa

s̃i
m5si

m1kT,

k5 . . . ,22,21,0,1,2, . . . , m51, . . . ,P, i 51, . . . ,N,
~8!

with

si
m5

T

Q
qi

m , ~9!

whereQ is a natural number controlling the degree of d
creteness of spatiotemporal patterns, and random integeqi

m

is chosen from the interval@0,Q) with equal probability.T
denotes the period of the spatiotemporal patterns. We sT
5250 msec andQ510 in what follows.

Let us consider the problem of encoding the spatiotem
ral patternss̃i

m so that the networks function as associati
memory. The recent results of the electrophysiological
periments have revealed that the modification of a syna
weight depends on the precise timing of presynaptic a
postsynaptic spikes@38–40#. Such modification of synaptic
weight DJ is approximately written in the form

DJ}W~Dt !

5H 21

tW,12tW,2
~eDt/tW,12eDt/tW,2! for Dt,0

1

tW,12tW,2
~e2Dt/tW,12e2Dt/tW,2! for 0<Dt,

~10!

with

Dt5tpost2tpre, ~11!

where tpostandtpre denote spike timing of presynaptic an
postsynaptic neurons, respectively. The asymmetric shap
3-3
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the time windowW(Dt) is described in Fig. 1, where we s
tW,1525 msec andtW,252.5 msec as we set in what fo
lows.

We encode the spatiotemporal patternss̃i
m according to

this spike-timing-dependent synaptic plasticity. In our pre
ous study@10#, we have introduced the learning rule

Ji j 5
1

N (
m51

P

W̃~si
m2sj

m!, ~12!

where, to take into account the periodicity of the pres
spatiotemporal patternss̃i

m , we defineT-periodic function

W̃(Dt) of the form

W̃~Dt !5 (
k52`

`

W~Dt1kT!

5
1

tW,12tW,2
Fe2Dt/tW,12e2(T2Dt)/tW,1

12e2T/tW,1

2
e2Dt/tW,22e2(T2Dt)/tW,2

12e2T/tW,2
G ,

0<Dt,T. ~13!

This learning rule is applied also to the present neural n
works. As will be shown in the following sections, the sp
tiotemporal patterns encoded with this learning rule are
trieved successfully in the network dynamics~1!–~3!.

III. PERFECT RETRIEVAL STATE

Here we investigate the stationary properties of retrie
state of the network in the limit of infinite number of ne
rons. In the present analysis, we focus on the retrieval s
of the form

t i* ~k!5
T̃

Q
qi

11kT̃,

k5 . . . ,22,21,0,1,2, . . . , i 51, . . . ,N, ~14!

where we suppose pattern 1 as the retrieved pattern. We
the retrieval state~14! perfect retrieval state since no spik
timing is allowed to deviate from the encoded pattern in t
retrieval state. Note that the periodT̃ in Eq. ~14! is different
from the periodT, which is assumed in generating the sp
tiotemporal patternss̃i

m , that is, the period of the retrieva
process is different from the period of the encoded pattern
the present section, we aim to evaluate the periodT̃, which
determines the form of the periodic solution for the perf
retrieval state. The stability of the periodic solution is exa
ined by a linear stability analysis in Sec. IV.

One possible way to determine the periodT̃ is substituting
Eq. ~14! into Eqs. ~4! and ~6! so as to obtain the periodi
synaptic electric currentI i5I PP,i1I IP in the limit of N→`.
Then, the currentI i is evaluated as a function ofT̃, and
hence we obtain the periodic firing pattern ofN neurons as a
06191
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function of T̃. Comparing the evaluated firing pattern wi
the substituted firing pattern~14!, we can determine the pe
riod T̃ self-consistently@10#.

We follow the almost same scheme as above, although
make a slight detour for the convenience of the calculat
below. We first consider the solution of the form

t i~k!5tq~k!,

k5 . . . ,22,21,0,1,2, . . . , i PUq , q50, . . . ,Q21,
~15!

where the set of indicesUq is defined as

Uq5$ i uqi
15q%. ~16!

We term a cluster of neurons that belong toUq sublatticeq.
In the solution~15!, neurons belonging to the same sublatti
are assumed to behave in the same manner. It will be sh
that the dynamics~1!–~3! has the solution of the form~15! in
the limit of N→` if P is finite @8#. We will evaluate the
Q-body dynamics for these sublattices, which has import
implication for the stability analysis in Sec. IV. After that, t
this Q-body dynamics of sublattices, we substitute the so
tion of the form

tq* ~k!5
T̃

Q
q1kT̃,

k5 . . . ,22,21,0,1,2, . . . , q50, . . . ,Q21. ~17!

Then, we obtain the periodT̃ for the perfect retrieval state
~14!.

In the analysis below, we always assume finiteP and fi-
nite Q. Asterisks are used to indicate the variables in
stationary state.

A. Dynamics of sublattices

In order to evaluate the dynamics ofQ sublattices, we first
evaluate the currentI PP,i in the limit of N→` under the
condition ~15!. Assuming that neuroni belongs to sublattice
q, we substitute Eqs.~12! and ~15! into Eq. ~4!. Then, we
have

I PP,i5APP(
q850

Q21

(
j PUq8

Ji j (
k

SPP@ t2tq8~k!#

5
APP

Q (
q8

1

Nq8
(

j PUq8

W̃F T

Q
~q2q8!G(

k
SPP@ t2tq8~k!#

1
APP

Q (
m.1

(
q8

1

Nq8
(

j PUq8

W̃F T

Q
~qi

m2qj
m!G

3(
k

SPP@ t2tq8~k!#
3-4
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5
APP

Q (
q8

J̃qq8(
k

SPP@ t2tq8~k!#, i PUq , ~18!

whereNq denotes the number of members inUq , and vari-
ablesJ̃qq8 andW̄ are defined as

J̃qq85W̃F T

Q
~q2q8!G1~P21!W̄, ~19!

W̄5
1

Q (
q50

Q21

W̃S T

Q
qD5

1

Q (
q52`

`

WS T

Q
qD . ~20!

Equation~18! shows that the currentI PP,i is independent of
index i in the limit of N→`. Thus, we define the sublattic
variableI PP,q as

I PP,i5I PP,q5
APP

Q (
q8

J̃qq8(
k

SPP@ t2tq8~k!#,

i PUq , q50, . . . ,Q21. ~21!

Following the same scheme, we rewrite the currentI IP in Eq.
~6! in the form

I IP5
AIP

Q (
q8

(
k

SIP@ t2tq8~k!#. ~22!

Equations~21! and ~22! imply that the synaptic electric
current I i5I PP,i1I IP,i depends only onq, that is, neurons
belonging to the same sublattice obtain the same amoun
synaptic electric current. Therefore, the dynamics~1!–~3!
has the solution in which neurons belonging to the sa
sublattice behave in the same manner, as we have assum
Eq. ~15!. Such dynamics of sublattices is expressed as

v̇q5 f ~vq ,wq1 , . . . ,wqn!1I q , ~23!

ẇql5gl~vq ,wq1 , . . . ,wqn!,

l 51, . . . ,n, q50, . . . ,Q21 ~24!

with

I q5I PP,q1I IP , ~25!

where (vq ,$wql%) represents the common state of neuro
that belong to sublatticeq. The common synaptic electri
currentI q in Eq. ~25! is defined by Eqs.~21! and ~22!.

B. Derivation of perfect retrieval state

Let us find the periodic solution for the perfect retriev
state~17! in the dynamics of sublattices~23!–~25!. Substi-
tuting Eq.~17! into Eq. ~21!, we have
06191
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I PP,q* 5
APP

Q (
q8

J̃qq8(
k

SPPF t2S T̃

Q
q81kT̃D G

5
APP

Q (
q8

J̃qq8S̃PPS t2
T̃

Q
q8D , ~26!

where theT̃-periodic functionS̃PP(t) is defined as

S̃PP~ t !5(
k

SPP~ t1kT̃!

5
1

tPP,12tPP,2
F e2t/tPP,1

12e2T̃/tPP,1
2

e2t/tPP,2

12e2T̃/tPP,2
G ,

0<t,T̃. ~27!

In the same manner, Eq.~22! is rewritten as

I IP* 5
AIP

Q (
q8

S̃IPS t2
T̃

Q
q8D , ~28!

where theT̃-periodic functionS̃IP(t) is defined as

S̃IP~ t !5(
k

SIP~ t1kT̃!

5
21

t IP,12t IP,2
F e2t/t IP,1

12e2T̃/t IP,1
2

e2t/t IP,2

12e2T̃/t IP,2
G ,

0<t,T̃. ~29!

Therefore, theT̃-periodic solution for the perfect retrieva
state (vq* ,$wql* %) obeys the dynamics of the form

v̇q* 5 f ~vq* ,wq1* , . . . ,wqn* !1I q* , ~30!

ẇql* 5gl~vq* ,wq1* , . . . ,wqn* !,

l 51, . . . ,n, q50, . . . ,Q21, ~31!

where

I q* 5I PP,q* 1I IP* . ~32!

As shown in Eqs.~26! and~28!, I PP,q* andI IP* are functions of

q andT̃, and alsoI q* is a function ofq andT̃. Hence, we can
calculate the behavior of each sublattice as a function oq

and T̃ from the dynamics~30!–~32!.
Noting Eqs.~19!, ~26!, and~28!, we obtain

I q* S t1
T̃

Q
qD 5I q8

* S t1
T̃

Q
q8D . ~33!

It means that every synaptic electric currentI q* is identical,
except that it exhibits the time shift according toq, and the
behavior of all sublattices in Eqs.~30!–~32! are evaluated
3-5
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from the time shift of sublattice 0. Therefore, we focus
the analysis of sublattice 0 in what follows.

We can calculate the behavior of sublattice 0 in the
namics~30!–~32! for the arbitrary value ofT̃. In the stability
analysis in Sec. IV, we will show that if the dynamics~1!–~3!
has the stable perfect retrieval state, then the dynamics~30!–
~32! also has the stable periodic solution atT̃5T̃* , where
T̃* denotes the solution of the period now under consid
ation. In almost every case, forT̃ that is sufficiently close to
T̃* , sublattice 0 in the dynamics~30!–~32! exhibits the pe-
riodic firing motion, and hence the spike timing of sublatti
0 in the stationary state is written as@10#

t0~k!5kT̃1r ~ T̃!, k5 . . . ,22,21,0,1,2, . . . ~34!

However from Eq.~17!, we obtain the spike timing of sub
lattice 0 as,

t0* ~k!5
T̃*

Q
01kT̃* 5kT̃* , k5 . . . ,22,21,0,1,2, . . . .

~35!

Comparing Eq.~34! with Eq. ~35!, we obtain the condition

r ~ T̃* !50. ~36!

As shown in our previous study@10#, we can easily evaluate
the explicit form of the functionr (T̃) numerically by inte-
grating the single-body dynamics of sublattice 0 in E
~30!–~32!. Once we evaluate the explicit form of the fun
tion r (T̃), we obtain the solutionT̃* from the condition~36!.

C. Optimal form of the time window W„Dt… to encode
multiple spatiotemporal patterns

In general, the properties of the network depend on
number of stored patternsP. We can encode a large numb
of patterns when a network exhibits a weak dependence
P. To see to what extent the properties of the network dep
on P, we decomposeI q* 5I PP,q* 1I IP* defined by Eqs.~26! and
~28! into the form

I q* 5Mq* 1I IP* 1Z* ~37!

with

Mq* 5
APP

Q (
q8

W̃F T

Q
~q2q8!G S̃PPS t2

T̃

Q
q8D , ~38!

Z* 5APP~P21!W̄S̄PP~ t !, ~39!

where

S̄PP~ t !5
1

Q (
q850

Q21

S̃PPS t1
T̃

Q
q8D 5

1

Q (
q852`

`

SPPS t1
T̃

Q
q8D .

~40!

We termZ* the crosstalk term since this term appears in E
~37! as a result of encoding multiple spatiotemporal patter
06191
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The functionS̄PP(t) always takes the positive value. Henc
asP increases,Z* exhibits an increase or a decrease depe
ing on the sign ofW̄, until the perfect retrieval state breaks
the critical number of patternsP5Pc.

Let us take notice ofW̄ appearing in Eq.~39!. The quan-
tity W̄, which is defined by Eq.~20!, is the average of the
time window W(Dt). For the time windowW(Dt) defined
by Eq. ~10!, one can easily show

W̄50. ~41!

In this case, the crosstalk termZ* vanishes, and hence w
can encode the arbitrary number of patterns in the limit
N→` as far asP is finite. It turns out that the present form
of the time windowW(Dt), which is found in experiments
is of great advantage to reduce the size ofW̄ and also the
crosstalk among encoded patterns.

IV. STABILITY OF THE PERFECT RETRIEVAL STATE

Although we have derived the periodic solutions for t
perfect retrieval state in the preceding section, it still rema
unclear whether the derived periodic solutions are stable
the network dynamics~1!–~3!. In some cases, the derivatio
of periodic solutions in the preceding section yields unsta
solutions, and the network cannot settle into such unsta
retrieval state. In the present section, we employ a lin
stability analysis for the perfect retrieval state we have
rived in the preceding section. That is the application of F
quet theory, which yields an eigenvalue problem with t
finite size of the matrix.

A. Decomposition of the problem: Stability of sublattices
and stability of the perfect retrieval state in the dynamics

of sublattices„30…–„32…

In a linear stability analysis, infinitesimal perturbation
assumed in the initial condition, and then the time evolut
of the deviation from the target solution is investigated to
first order in Taylor series expansion. When we apply F
quet theory to the present system, the spike timing of neu
i that belongs to sublatticeq is written in the form

t i~k!5tq* ~k!1dt i~k!,

k5 . . . ,22,21,0,1,2 . . . , i PUq , q50, . . . ,Q21,
~42!

where we suppose pattern 1 as the retrieved pattern. We
sume that the initial condition is correlated only with patte
1 and the correlation with other patterns does not arise in
time evolution of the network dynamics, that is, we assu
dt i(k) is correlated only withsj

1 ( j 51, . . . ,N). Substituting
Eqs.~12! and~42! into Eq.~4!, we obtainI PP,i( i PUq) of the
form
3-6
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I PP,i5
APP

Q (
q8

W̃F T

Q
~q2q8!G(

k

1

Nq8
(

j PUq8

SPP@ t2tq8
* ~k!2dt j~k!#1

APP

Q (
q8

(
k

(
m.1

1

Nq8
(

j PUq8

3W̃F T

Q
~qi

m2qj
m!GSPP@ t2tq8

* ~k!2dt j~k!#

5
APP

Q (
q8

W̃F T

Q
~q2q8!G(

k

1

Nq8
(

j PUq8

SPP@ t2tq8
* ~k!2dt j~k!#1

APP

Q (
q8

(
k

(
m.1

S 1

Nq8
(

j PUq8

W̃F T

Q
~qi

m2qj
m!G D

3S 1

Nq8
(

j PUq8

SPP@ t2tq8
* ~k!2dt j~k!# D

5
APP

Q (
q8

J̃qq8(
k

1

Nq8
(

j PUq8

SPP@ t2tq8
* ~k!2dt j~k!#, i PUq , ~43!
on
where we utilize the assumption thatdt i(k) is correlated
only with sj

15(T/Q)qj
1 ( j 51, . . . ,N). Since Eq. ~43!

shows thatI PP,i depends only onq, we are allowed to define
sublattice variableI PP,q as

I PP,i5I PP,q5
APP

Q (
q8

J̃qq8(
k

1

Nq8
(

j PUq8

SPP@ t2tq8
* ~k!

2dt j~k!#, i PUq . ~44!

Performing a truncated Taylor series expansion of Eq.~44!,
we have

I PP,q5I PP,q* 1dI PP,q ~45!

with

dI PP,q52
APP

Q (
q8

J̃qq8(
k

SPP8 @ t2tq8
* ~k!#d t̄ q8~k!,

~46!

where the derivative ofSPP(t) is written as

SPP8 ~ t !5H 0 for t,0,

21

tPP,12tPP,2
S e2t/tPP,1

tPP,1
2

e2t/tPP,1

tPP,2
D for 0<t,

~47!

and the sublattice variabled t̄ q(k) is defined as

d t̄ q~k!5
1

Nq
(

i PUq

dt i~k!. ~48!

Following the same scheme asI PP,q , we obtain the devia-
tion of I IP in Eq. ~6! as

I IP5I IP* 1dI IP , ~49!

with
06191
dI IP52
AIP

Q (
q8

(
k

SIP8 @ t2tq8~k!#d t̄ q8~k!, ~50!

where the derivative ofSIP(t) is written as

SIP8 ~ t !5H 0 for t,0,

1

t IP,12t IP,2
S e2t/t IP,1

t IP,1
2

e2t/t IP,2

t IP,2
D for 0<t.

~51!

We represent deviation appearing in the state of neuri
by

v i5vq* 1dv i , ~52!

wil 5wql* 1dwil ,

l 51, . . . ,n, i PUq , q50, . . . ,Q21. ~53!

Noting Eq.~44!, we safely replaceI i5I PP,i1I IP in Eq. ~1! by
sublattice variableI q5I PP,q1I IP . Then, we perform a trun-
cated Taylor series expansion of Eqs.~1! and ~2! and obtain
the dynamics of the form

d v̇ i5
] f

]v U
q

dv i1(
l 8

] f

]wl 8
U

q

dwil 81dI q , ~54!

dẇil 5
]gl

]v U
q

dv i1(
l 8

]gl

]wl 8
U

q

dwil 8 ,

l 51, . . . ,n, i PUq , q50, . . . ,Q21 ~55!

with

dI q5dI PP,q1dI IP , ~56!

where we introduce abbreviations such as] f /]vuq
5] f /]vu(vq* ,$wql* %) .
3-7
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From the definition of spike timing, we havev i@ tq* (k)
1dt i(k)#5u ( i PUq), which yields

dt i~k!52
dv i@ tq* ~k!#

c
, i PUq , ~57!

where constantc is defined as

c5 v̇q* @ tq* ~k!#. ~58!

Note that constantc is independent ofq andk. Now we can
evaluate the time evolution of (dv i ,$dwil %) from Eqs.~54!–
~57!. To solve this dynamics we need to calculatedI q

5dI PP,q1dI IP , in which d t̄ q(k) are required at timet
5tq* (k) (k5 . . . ,22,21,0,1,2, . . . ) asshown in Eqs.~46!

and~50!. We can evaluated t̄ q(k) from $dv i@ tq* (k)#% by use
of Eqs.~48! and ~57!.

It is a hopeless task to apply Floquet theory directly to
N-body dynamics~54!–~56! since that gives the eigenvalu
problem with the infinite size of matrix. For the purpose
reducing the degree of freedom, we define the following s
lattice variables

v̄q5
1

Nq
(

i PUq

v i , ~59!

w̄ql5
1

Nq
(

i PUq

wil ,

l 51, . . . ,n, q50, . . . ,Q21. ~60!

Then, from Eqs.~54! and ~55!, we have

d v̇̄q5
1

Nq
(

i PUq

d v̇ i5
] f

]v U
q

d v̄q1(
l 8

] f

]wl 8
U

q

dw̄ql81dI q ,

~61!

d ẇ̄ql5
1

Nq
(

i PUq

dẇil 5
]gl

]v U
q

d v̄q1(
l 8

]gl

]wl 8
U

q

dw̄ql8 ,

l 51, . . . ,n, q50, . . . ,Q21, ~62!

where, from Eqs.~46! and~50!, dI q in Eq. ~61! is written as

dI q5dI PP,q1dI IP

52
APP

Q (
q8

J̃qq8(
k

SPP8 @ t2tq8
* ~k!#d t̄ q8~k!

2
AIP

Q (
q8

(
k

SIP8 @ t2tq8~k!#d t̄ q8~k!. ~63!

In addition, substituting Eq.~57! into Eq. ~48!, we have

d t̄ q~k!52
d v̄q@ tq* ~k!#

c
. ~64!
06191
e

f
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Now we obtain theQ-body dynamics~61!–~64!. Calculation
of dI q requires $d t̄ q8(k)%, which are obtained from

$d v̄q8@ tq8
* (k)#% together with Eq.~64!. To this Q-body dy-

namics we will apply Floquet theory in Sec. IV B.
The stability of the periodic solution in theQ-body dy-

namics~61!–~64! is the necessary condition for the stabili
of the retrieval state in the original dynamics~1!–~3!, but not
the sufficient condition. Therefore, we must investigate
behavior of the following variables:

d ṽ i5v i2 v̄q5dv i2d v̄q , ~65!

dw̃il 5wil 2w̄ql5dwil 2dw̄ql ,

l 51, . . . ,n, i PUq , q50, . . . ,Q21. ~66!

If the perfect retrieval state is stable, (d ṽ i ,$dw̃il %) converges
into the fixed point (0,$0%). Subtracting Eqs.~61! and ~62!
from Eqs.~54! and ~55!, respectively, we obtain

d v̇̃ i5
] f

]v U
q

d ṽ i1(
l 8

] f

]wl 8
U

q

dw̃il 8 , ~67!

d ẇ̃i l 5
]gl

]v U
q

d ṽ i1(
l 8

]gl

]wl 8
U

q

dw̃il 8 ,

l 50, . . . ,n, i PUq , q50, . . . ,Q21. ~68!

For the stable perfect retrieval state, the fixed point (0,$0%) is
necessary to be stable in the dynamics~67! and ~68!. Note
that N deviations (d ṽ i ,$dw̃il %) appearing in the dynamic
Eqs.~67! and ~68! do not interact with each other since th
dynamics includes no interaction term likedI q . This stabil-
ity problem is thus a single-body problem, which is eas
evaluated numerically.

The stability problem of the perfect retrieval state in t
dynamics ~1!–~3! is now decomposed into two stabilit
problems: the stability of the perfect retrieval state in t
Q-body dynamics~61!–~64! and the stability of the fixed
point (0,$0%) in the single-body dynamics~67! and ~68!.
What are the implications of these two stability problems?
is straightforward to see that the former problem is equi
lent to the stability problem of the perfect retrieval state
the Q-body dynamics of sublattices~23!–~25!. Hence, we
conveniently call the former problem the stability of the pe
fect retrieval state in the dynamics of sublattices. In the
namics of sublattices~23!–~25! we neglect the distribution o
spike timing of neurons in each sublattice, and this distrib
tion of spike timing is treated in the latter problem. We th
term the latter problem the stability of sublattices.

It is of interest that a truncated Taylor series expansion
Eqs. ~30! and ~31! with fixed I q* gives the same stability
problem as Eqs.~67! and~68!. This result implies that if the
periodic solution (vq* ,$wql* %) is stable in the dynamics~30!–
~32!, then the stability of sublattices is ensured. We evalu
the periodic solution (vq* ,$wql* %) by the numerical integra-
tion of the dynamics~30! and~31!, and hence it is impossible
3-8



ic
of
tio
o
o

e

o

ia
a-
o

o

ne

LINEAR STABILITY ANALYSIS OF RETRIEVAL . . . PHYSICAL REVIEW E 66, 061913 ~2002!
to obtain the unstable periodic solution of the dynamics~30!
and~31!. In other words, the numerically evaluated period
solution (vq* ,$wql* %) is always stable, and also the stability
sublattices is always ensured. Therefore, further investiga
on the stability of sublattice is unnecessary, and we focus
the stability of the perfect retrieval state in the dynamics
sublattices in the following section.

B. Floquet theory for the perfect retrieval state in the
dynamics of sublattices

Here we apply Floquet theory to theQ-body dynamics
~61!–~64!. In the evaluation of this dynamics,d t̄ q(k) are
required at timet5tq* (k) (k5 . . . ,22,21,0,1,2, . . . ). One
may thus consider it convenient to define the vector

dxq~k!5~d v̄q@ tq* ~k!#,dw̄q1@ tq* ~k!#, . . . ,dw̄qn@ tq* ~k!# !.
~69!

The vector dxq(k) represents the deviation at timet
5tq* (k). Since the vectordxq(k) includes the variable

d v̄q@ tq* (k)#, we can calculated t̄ q(k) from dxq(k) by use of
Eq. ~64!. Let us consider the problem of calculating the d
viation dx0(k11) from the past deviationsdxq(k8) (q
50, . . . ,Q21, k8,k11).

The a functionsSPP(t) and SIP(t) give an infinite long-
time influence after the activation, and the derivatives
thesea functions appearing in Eqs.~46! and ~50! also have
an infinite long-time influence. It means that long past dev
tions d t̄ q(k8) and alsodxq(k8) are necessary in the evalu
tion of the present value ofdI 0. It is again a hopeless task t
consider Floquet theory based on the vectordxq(k) since
that still gives an eigenvalue problem with the infinite size
matrix.

For the further reduction of the size of matrix, we defi
the variables

I 1,q5
APP

Q (
q8

J̃qq8 (
t
q8
* (k8),t

e2[ t2t
q8
* (k8)2d t̄ q8(k8)]/ tPP,1

tPP,12tPP,2
,

~70!

I 2,q5
APP

Q (
q8

J̃qq8 (
t
q8
* (k8),t

2e2[ t2t
q8
* (k8)2d t̄ q8(k8)]/ tPP,2

tPP,12tPP,2
,

~71!

I 3,q5
AIP

Q (
q8

(
t
q8
* (k8),t

2e2[ t2t
q8
* (k8)2d t̄ q8(k8)]/ t IP,1

t IP,12t IP,2
, ~72!

I 4,q5
AIP

Q (
q8

(
t
q8
* (k8),t

e2[ t2t
q8
* (k8)2d t̄ q8(k8)]/ t IP,2

t IP,12t IP,2
. ~73!

Then, for the specific form ofa function ~5!, we can rewrite
Eq. ~46! as
06191
n
n
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f

dI PP,052
APP

Q (
q8

J̃0q8SPP8 @ t2tq8
* ~k!#d t̄ q8~k!

1dI 1,0@ t0* ~k!#e2[ t2t0* (k)]/ tPP,1

1dI 2,0@ t0* ~k!#e2[ t2t0* (k)]/ tPP,2,

t0* ~k!,t,t0* ~k11!, ~74!

where

dI 1,0@ t0* ~k!#52
APP

Q (
q8

J̃0q8

3 (
t
q8
* (k8),t0* (k)

2e2[ t0* (k)2t
q8
* (k8)]/ tPP,1

tPP,1~tPP,12tPP,2!
d t̄ q8~k8!,

~75!

dI 2,0@ t0* ~k!#52
APP

Q (
q8

J̃0q8

3 (
t
q8
* (k8),t0* (k)

e2[ t0* (k)2t
q8
* (k8)]/ tPP,2

tPP,2~tPP,12tPP,2!
d t̄ q8~k8!.

~76!

In the same way, we rewrite Eq.~50! as

dI IP52
APP

Q (
q8

SIP8 @ t2tq8
* ~k!#d t̄ q8~k!

1dI 3,0@ t0* ~k!#e2[ t2t0* (k)]/ t IP,1

1dI 4,0@ t0* ~k!#e2[ t2t0* (k)]/ t IP,2,

t0* ~k!,t,t0* ~k11!, ~77!

where

dI 3,0@ t0* ~k!#52
AIP

Q (
q8

3 (
t
q8
* (k8),t0* (k)

e2[ t0* (k)2t
q8
* (k8)]/ t IP,1

t IP,1~t IP,12t IP,2!
d t̄ q8~k8!,

~78!

dI 4,0@ t0* ~k!#52
AIP

Q (
q8

3 (
t
q8
* (k8),t0* (k)

2e2[ t0* (k)2t
q8
* (k8)]/ t IP,2

t IP,2~t IP,12t IP,2!
d t̄ q8~k8!.

~79!

In Eqs.~74! and~77!, dI PP,0anddI IP „t0* (k),t,t0* (k 11)…
3-9
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are evaluated only from$d t̄ q8(k)% and$dI s8,0@ t0* (k)#%. Solv-
ing the dynamics~61! and ~62! with dI 05dI PP,01dI IP de-
fined by Eqs. ~74! and ~77! under the condition
„d v̄0@ t0* (k)#,$dw̄0l 8@ t0* (k)#%…, we obtain the next deviation
06191
„d v̄0@ t0* (k11)#,$dw̄0l 8@ t0* (k11)#%… as a function of

$d t̄ q8(k)%, d v̄0@ t0* (k)#, $dw̄0l 8@ t0* (k)#%, and
$dI s8,0@ t0* (k)#%. Hence, we are allowed to define the fun
tions
f

dv0@ t0* ~k11!#5R„$d t̄ q8~k!%,d v̄0@ t0* ~k!#,$dw̄0l 8@ t0* ~k!#%,$dI s8,0@ t0* ~k!#%…, ~80!

dw0l@ t0* ~k11!#5Sl„$d t̄ q8~k!%,d v̄0@ t0* ~k!#,$dw̄0l 8@ t0* ~k!#%,$dI s8,0@ t0* ~k!#%),

l 51, . . . ,n. ~81!

Because of the form of the dynamics~61! and ~62!, we obtain

R~$d t̄ q8%,d v̄,$dw̄l 8%,$dI s8%!5(
q8

]R

]~d t̄ q8!
d t̄ q81

]R

]~d v̄ !
d v̄1(

l 8

]R

]~dw̄l 8!
dw̄l 81(

s8

]R

]~dI s8!
dI s8 , ~82!

Sl~$d t̄ q8%,d v̄,$dw̄l 8%,$dI s8%!5(
q8

]Sl

]~d t̄ q8!
d t̄ q81

]Sl

]~d v̄ !
d v̄1(

l 8

]Sl

]~dw̄l 8!
dw̄l 81(

s8

]Sl

]~dI s8!
dI s8 ,

l 51, . . . ,n. ~83!

Note that every coefficient in Eqs.~82! and ~83! is a constant, which is independent of ($d t̄ q8%,d v̄,$dw̄l 8%,$dI s8%).
Meanwhile, from Eq.~75!, we obtain

dI 1,0@ t0* ~k11!#52
APP

Q (
q8

J̃0q8

2e2[ t0* (k11)2t
q8
* (k)]/ tPP,1

tPP,1~tPP,12tPP,2!
d t̄ q8~k!1dI 1,0@ t0* ~k!#e2T̃/t IP,1. ~84!

It means thatdI 1,0@ t0* (k11)# is a function of$d t̄ q8(k)% and dI 1,0@ t0* (k)#. We obtain the similar relation for the rest o

$dI s8,0@ t0* (k11)#%, and they are also functions of$d t̄ q8(k)% anddI s8,0@ t0* (k)#.
Now, we define the vector

d x̃q~k!5„d v̄q@ tq* ~k!#,dw̄q1@ tq* ~k!#, . . . ,dw̄qn@ tq* ~k!#,dI 1,q@ tq* ~k!#, . . . ,dI 4,q@ tq* ~k!#…,

k5 . . . ,22,21,0,1,2, . . . , q50, . . . ,Q21. ~85!
tem,
Then, noting Eq.~64!, we can summarize Eqs.~80!–~84!,
and so on in the form

d x̃0~k11!5 (
q51

Q21

Aqd x̃q~k!1B d x̃0~k!, ~86!

where the definitions of the matricesAq andB are given in
Appendix B. Furthermore, we define the vectors

dX~0!5„d x̃Q21~k!,d x̃Q22~k!, . . . ,d x̃0~k!…, ~87!

dX~1!5„d x̃0~k11!,d x̃Q21~k!, . . . ,d x̃1~k!…. ~88!

Then, the relation betweendX(0) anddX(1) is written as

dX~1!5M dX~0!, ~89!

where
M5S AQ21 AQ22 . . . A1 B

E 0 . . . 0 0

0 E 0 0

A � A

0 0 E 0

D . ~90!

Because of the symmetrical properties of the present sys
we have

dX~2!5M dX~1!5M2dX~0!, ~91!

where

dX~2!5„d x̃1~k11!,d x̃0~k11!,d x̃Q21~k!, . . . ,d x̃2~k!….
~92!
3-10
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Following the same scheme, we obtain the vectors of
form

dX~n!5MndX~0!, 1<n, ~93!

wheredX(n) represents the deviations in the future.
Now the stability problem of the periodic solution is r

duced into the eigenvalue problem with the finite size of
matrix M . As will be shown in Appendixes B and C, we ca
easily evaluate the matrixM numerically since the coeffi
il
th

ly-
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cients in Eqs.~82! and ~83! are obtained by numerical inte
gration of the single-body dynamics~C1!–~C5!. In general,
the matrix derived in Floquet theory always has the eig
valuel151 with the eigenvector corresponding to the tim
shift in the periodic solution. The matrixM also has the
eigenvaluel151 with the eigenvector

dX05~d x̃0 , . . . ,d x̃0! ~94!

with
d x̃05„v̇0* @ t0* ~k!#,ẇ01* @ t0* ~k!#, . . . ,ẇ0n* @ t0* ~k!#, İ 1,0* @ t0* ~k!#, . . . ,İ 4,0* @ t0* ~k!#…, ~95!
nu-

les
ed

e
ttice
ed
where we define$ İ s,0* @ t0* (k)#% by substitutingd t̄ q8(k8)50
(k85 . . . ,22,21,0,1,2, . . . , q850, . . . ,Q21) into the
derivatives of Eqs.~70!–~73!. If the periodic solution is
stable, the absolute value of other eigenvaluesulmu (1,m)
must be less than 1. Therefore, we can determine the stab
of the perfect retrieval state by numerical computation of
eigenvalues ofM .

In the following sections, we will apply the present ana
sis to evaluate the stable perfect retrieval state for the var
values of parameters. As will be shown, the present anal
is powerful enough to draw the phase diagrams.

V. RETRIEVAL PROCESS

In this section, we illustrate the typical behavior of ne
work in the process of memory retrieval. In what follows, w
always assumeQ510, which brings about discrete type o
firing pattern of memory retrieval. For the initial condition o
the network, we set all states of neuron (v i ,$wil %) to be at
the stable fixed point of the dynamics~1! and ~2! with I i
50. To evoke the retrieval of pattern 1, we give the exter
stimuli of the form

I EXT,i5H AEXTdS t2
TEXT

Q
qi

1D for 0<t<aEXTTEXT,

0 otherwise,
~96!

whered(t) represents the delta function, and the parame
AEXT , TEXT , andaEXT are chosen so that the initial part o
the pattern 1 is forced to be retrieved. In the present stu
we setAEXT530, TEXT;T̃, and aEXT,0.1. Note that the
external stimuliI EXT,i is applied only in the beginning of th
network dynamics.

In Fig. 2~a!, we describe the result of the numerical sim
lation with P53 and N58000. The initial firings of the
neurons are evoked by the external electric currentI EXT,i ,
while other firings are brought about by the synaptic elec
currentI PP,i1I IP . The firing pattern in Fig. 2~a!, which looks
like vertical bars, indicates the synchronized firing of a n
merous number of neurons. Since it is difficult to s
ity
e

us
is

l

rs

y,

-

c

-

whether the retrieval of pattern 1 is realized in Fig. 2~a!, we
replot the same result of numerical simulation in Fig. 2~b!,
where the vertical axes is set to representqi

1 . In this figure,

FIG. 2. The retrieval process of pattern 1 observed in the
merical simulation with APP530 000, tPP,153 msec, tPP,2

50.3 msec,AIP5250, tPP,1510 msec,tPP,251 msec,P53, and
N58000. ~a! Spike timings of neurons are plotted by closed circ
as a function of time. The initial firings of the neurons are evok
by the external electric currentI EXT,i , while other firings are
brought about by the synaptic electric currentI PP,i1I IP . ~b! Setting
the vertical axis representingqi

1 we replot the same result of th
numerical simulation. The neurons belonging to the same subla
exhibit synchronized firing, which is expressed as overlapp
closed circles.
3-11
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we clearly see the successful retrieval of pattern 1, in wh
the neurons belonging to the same sublattice exhibit sync
nized firing.

The dynamical behavior of the neuron withqi
150 is de-

scribed in Fig. 3~a!. After the transient behavior, the neuro
settles into the stationary state, where the neuron exh
periodic firing. In Fig. 3~b!, we describe the periodic solutio
for retrieval state obtained from Eq.~36!. In order to examine
the stability of this solution, we calculate the explicit valu
of the matrixM numerically. In the present case, the larg
absolute eigenvalue is 1, and the theoretically evaluated
fect retrieval state in Fig. 3~b! is stable. The good agreeme
between Figs. 3~a! and 3~b! implies the validity of the
present analysis. It is also worth noting that the theoret
result in Fig. 3~b! is independent ofP because of Eq.~41!.
We setP53 in the numerical simulation in Fig. 3~a!, and
this result of numerical simulation is well explained by t
P-independent solution in Fig. 3~b!. We will see the same
result of numerical simulation even with the larger value
P, as far asP/N is sufficiently small.

VI. PHASE TRANSITION DUE TO THE LOSS OF THE
STABILITY OF THE PERFECT RETRIEVAL STATE

Here we investigate the effect of inhibitory synaptic ele
tric currentI IP , which is controlled byAIP . From Eq.~36!,

FIG. 3. ~a! The behavior of a neuron withqi
150 observed in the

numerical simulation in Fig. 2. The membrane potentialv i and the
synaptic electric currentI i are plotted as a function of time.~b! The
result of the theoretical analysis for the stationary state of the n
ron, which explains the stationary behavior of the neuron in~a!.
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we obtainT̃/Q as a function ofAIP , which is plotted in Fig.

4~a!. As AIP increases, the period of the retrieval processT̃
becomes longer since each neuron obtains a large amou
inhibitory synaptic electric currentI IP with the large value of
AIP . Figure 4~b! describes the absolute eigenvalues of
matrix M . Size of the matrixM is 80380, and the larges
two absolute eigenvalues are plotted in Fig. 4~b!. With AIP
&500 the largest absolute eigenvalue is 1, while it exceed
with 500&AIP , that is to say, the stability of the perfec
retrieval state is lost beyond the critical pointAIP

c ;500.
To observe this phase transition in numerical simulatio

we calculate the interspike intervals~ISIs! of all neurons
changing the value ofAIP , as described in Fig. 4~c!. Note
that the ISIs we calculate here are based on spike timin
all neurons. When neuroni and neuronj fire sequentially at
time t i and t j , respectively, we calculate the time differen
t j2t i to obtain the ISIs of all neurons. By means of the
ISIs, we can evaluate the gaps in spike timing appearing
Fig. 2~a!, which corresponds toT̃/Q. The theoretical result
in Figs. 4~a! and 4~b! explains ISIs in Fig. 4~c! well, al-
though we see some fluctuations due to the finite numbe
neurons near the critical pointAIP

c . In Fig. 4~d!, we calculate
the ISIs in the dynamics of sublattices~23!–~25!, in which
we have taken the limit of the infinite number of neuron
The theoretically evaluated critical pointAIP

c explains the
loss of the stability observed in Fig. 4~d! with a high degree
of precision.

In Fig. 5, we drawAIP-APPphase diagram, which is evalu
ated by the theoretical analysis. We find the stable per
retrieval state in the region represented by PR. AsAPP de-
creases, the range ofAIP for the stable perfect retrieval stat
becomes narrower since a large amount ofI PP is required for
the successful memory retrieval under the strong inhibitio

VII. TWO SEPARATED PERFECT RETRIEVAL PHASES
APPEARING WITH THE SLOW a FUNCTION

SPP„t…

In the previous sections, we assumeSPP(t) with tPP,1
53 msec andtPP,250.3 msec as well asSIP(t) with t IP,1
510 msec andt IP,251 msec, whereSPP(t) decays much
faster thanSIP(t). In order to examine the role of the deca
time constants ina functions, we investigate the case of th
slow a function SPP(t) with tPP,1520 msec andSPP,2
52 msec. For this slowa function SPP(t), we describe
AIP-APP phase diagram in Fig. 6. The distinctive feature
this phase diagram is the perfect retrieval phase appearin
the region with the large value ofAIP . In the case of the fas
a function SPP(t), the strong inhibition with the large valu
of AIP tends to suppress the perfect retrieval, as describe
Fig. 5. Nevertheless, in Fig. 6, we see two separated per
retrieval phases in the region with 40 000&APP&70 000,
while these two retrieval phases merge with each other in
region with 70 000&APP.

One example of the retrieval process in the region w
the large value ofAIP is illustrated in Fig. 7. As a result of the
large value ofAIP , the neuron obtains a large amount of t
inhibitory electric currentI IP , which oscillates with the pe-

u-
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FIG. 4. ~a! T̃/Q obtained from Eq.~36! is plotted as a function ofAIP . ~b! The largest two absolute eigenvalues of the matrixM are
plotted as a function ofAIP . One of the absolute eigenvalues exceeds 1 beyond the critical pointAIP

c ;500, which is represented by th
vertical lines in all four figures. The perfect retrieval state we have evaluated in~a! is stable only below the critical pointAIP

c . ~c! Changing
the values ofAIP , we observe the ISIs of all neurons in the numerical simulations withP51 andN58000. See text for the definition of th
ISIs we calculate here.~d! We observe the ISIs also in the dynamics of sublattices~23!–~25!. The critical pointAIP

c evaluated in~a! and~b!
explains the phase transition observed in~c! and~d! well, although we see some fluctuations nearAIP

c owing to the finite number of neuron
in the case of~c!. Beyond the critical pointAIP

c the network settles into another stationary state. The values of parameters aretPP,1

53 msec,tPP,250.3 msec,APP530 000,t IP,1510 msec, andt IP,251 msec.
-
ig
ai

his
nt
t
the

a
io
riod T̃/Q. In the retrieval process,Q sublattices emerge ex
hibiting synchronized firing of neurons, as described in F
7~a!. When one firing of sublattice occurs, all neurons obt
a large amount of the inhibitory synaptic electric currentI IP .

FIG. 5. AIP-APP phase diagram obtained by the theoretic
analysis. The stable perfect retrieval state is found in the reg
denoted by PR. The values of parameters aretPP,153 msec,
tPP,250.3 msec,t IP,1510 msec, andtPP,151 msec.
06191
.
n

Then, neurons in the next sublattice cannot fire until t
inhibitory electric current decays with the time consta
t IP,1. In this way, the oscillatory inhibitory electric curren
I IP regulates the spike intervals of sublattices, and hence

memory retrieval with the long periodT̃ is realized. The

l
n

FIG. 6. The same as Fig. 5, except thattPP,1520 msec and
tPP,252 msec.
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long-time influence of the slowa function SPP(t) is indis-
pensable for this memory retrieval since the time gaps
firings of sublattices~i.e., T̃/Q) are considerably large.

In Figs. 8~a! and 8~b!, we describe the result of our analy
sis with APP565 000, where we see two separated perf
retrieval phases. Near the boundary of the retrieval pha
Eq. ~36! yields two different perfect retrieval states, whic
are indicated by ‘‘s’’ and ‘‘ u’’ in Fig. 8~a!. As described in
Fig. 8~b!, the largest absolute eigenvalue of the matrixM for
the stateu exceeds 1, while that for the states always takes
1. This result implies that the state s is stable and the stau
is unstable. The ISIs observed in the numerical simulati
are plotted as a function ofAIP in Fig. 8~c!. To obtain these
ISIs, we slowly change the value ofAIP both from AIP50
and fromAIP52000. In the present case, neurons cease
ing between the critical pointsAIP

c (1) andAIP
c (2). TheISIs

observed in the dynamics of sublattices~23!–~25! are also
plotted in Fig. 8~d!. The phase transitions observed in Fig
8~c! and 8~d! are well explained by the theoretical analysis
Figs. 8~a! and 8~b!.

In order to investigate more details about decay time c
stants, we describeAIP-tPP,1 phase diagram in Fig. 9, in

FIG. 7. The retrieval process of pattern 1 in the case of the s
a functionSPP(t) with tPP,1520 msec andtPP,252 msec under the
strong inhibition withAIP51500. ~a! Spike timings of neurons ob
served in the numerical simulations withP53 and N58000 are
plotted as a function of time. Note that the vertical axis represe
qi

1 . ~b! The membrane potentialv i and the synaptic electric curren
I i are plotted as a function of time for a neuron withqi

150. The
values of parameters areAPP565 000, t IP,1510 msec, andt IP,2

51 msec.
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which we fix tPP,250.1tPP,1. In the region with the long
tPP,1, we find two separated retrieval phases. In this ca
stable and unstable solutions of Eq.~36! are found only in-
side the perfect retrieval phase, as described in Fig. 8.
might thus conceive that the stability analysis is not nec
sary for the purpose of determining the phase bound
However, with the shorttPP,1, we find the unstable solution
of Eq. ~36! outside the perfect retrieval phase, as describe
Fig. 4. The stability analysis is hence indispensable to de
mine the boundary of the perfect retrieval phase, particula
with the shorttPP,1.

VIII. DISCUSSION

We have investigated associative memory neural n
works of spiking neurons memorizing periodic spatiotemp
ral patterns of spike timing. In encoding the multiple sp
tiotemporal patterns, we assume the spike-timing-depen
synaptic plasticity with the asymmetric time windowW(Dt)
in Fig. 1. Encoded periodic spatiotemporal patterns of sp
timing are reproduced successfully in the periodic firing p
tern of neurons in the process of memory retrieval. In t
retrieval process,Q sublattices~clusters of neurons! exhibit
synchronized firing, and the oscillatory inhibitory electr
current I IP , which is supposed to come from interneuron
regulates the spike timing of sublattices.

In order to investigate the stationary properties of the s
tem, we have derived the periodic solution for the retrie
state analytically in the limit of infinite number of neuron
From this analysis, we have shown that if the average of
time window W(Dt) takes the value of zero, the crossta
among encoded patterns vanishes. This result implies tha
present form of the time windowW(Dt), which is found in
experiments, has a great advantage in encoding a large n
ber of spatiotemporal patterns.

To elucidate the stability of the derived periodic solutio
we have employed a linear stability analysis. In this line
stability analysis we have to evaluate the time evolution
infinitesimal deviation so as to obtain the matrix for Floqu
theory, although the naive application of Floquet theo
yields infinite size of matrix. In order to reduce the size
matrix, we have employed some decomposition of the sta
ity problem, by which the original stability problem withN
neurons is reduced into the stability problem withQ sublat-
tices. Then, to take into account the infinite long-time infl
ence of a functions, we have introduced the variabl
$I s8,q%, which enable us to obtain the finite size of matrixM
for Floquet theory. The explicit form ofM is computed by
the numerical integration of the single-body dynamics~C1!–
~C5!, and the stability of solutions is evaluated from the
genvalues ofM .

Based on these methods of analysis, we have investig
the stationary properties of retrieval state in the case of
fast a function SPP(t) with tPP,153 msec and tPP,2
50.3 msec. In Fig. 4~a!, we have obtained periodic solution
for the retrieval state for various value ofAPP by solving Eq.
~36!. Then, in Fig. 4~b!, we have employed the stabilit
analysis of these periodic solution to obtain the critical po
AIP

c . The phase transition observed in the numerical simu

w

ts
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FIG. 8. ~a! For the case of the slowa function SPP(t) with tPP,1520 msec andtPP,252 msec, we plotT̃/Q obtained from Eq.~36! as
a function ofAIP . Near the boundary, we find two solutions of Eq.~36!, which are represented by ‘‘s’’ and ‘‘ u. ’’ ~b! The largest absolute
eigenvalue of the matrixM is plotted as a function ofAIP . The eigenvalues for states and stateu are represented byls andlu , respectively.
This result implies that states is stable, while stateu is unstable. The two critical pointAIP

c (1) andAIP
c (2) obtained from the theoretica

analysis~a! and~b! are represented by the vertical lines in all four figures.~c! The ISIs observed in the numerical simulations withP51 and
N58000. We slowly change the values ofAIP both from AIP50 andAIP52000. ~d! The ISIs observed in the dynamics of sublattic
~23!–~25!. The phase transitions observed in the numerical simulations~c! and ~d! are well explained by the critical pointsAIP

c (1) and
AIP

c (2). In ~c! and~d!, all neurons cease firing betweenAIP
c (1) andAIP

c (2). Thevalues of parameters areAPP565 000,t IP,1510 msec, and
t IP,251 msec.
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tions in Fig. 4~c! and 4~d! is well explained by this critical
point AIP

c . The condition for the successful memory retriev
is summarized asAIP-APP phase diagram in Fig. 5.

Meanwhile, with the slowa function SPP(t) with tPP,1

520 msec andtPP,252 msec, we have found two separat
retrieval phases, as shown in Fig. 6. The behavior of neur
in the memory retrieval with the large value ofAIP is de-
scribed in Fig. 7, where we see the large size of oscillat
inhibitory synaptic electric currentI IP regulating the spike
timing of neurons. The result of the theoretical analysis
illustrated in Eq.~4!, where the stability analysis is used
choose the stable solution from the multiple solutions of E
~36!.

The heart of the present stability analysis lies in the ex
reduction of the size of the matrix for Floquet theory. Sin
Q sublattices arise in the stationary state, we have to eval
the matrix with the dimension of (11n14)Q, where 11n
corresponds to the degree of freedom of the neuron dyna
f (v i ,wi1 , . . . ,win) andgl(v i ,wi1 , . . . ,win) ( l 51, . . . ,n),
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and additional four degrees of freedom are required to ev
ate the infinite long-time influence ofa functionsSPP(t) and
SIP(t). In the present study we setQ510 andn53, which
yields the matrix with the dimension of 80. Although on

FIG. 9. AIP-tPP,1 phase diagram obtained by the theoretic
analysis, where we fixtPP,250.1tPP,1. The values of parameters ar
APP565 000,t IP,1510 msec, andt IP,251 msec.
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might conceive that the size of this matrix is somewhat lar
the critical points obtained from this matrix well explain th
result of numerical simulations with a high degree of pre
sion, as demonstrated in Figs. 4 and 8. In other netw
models@52,5#, only a few sublattices emerges and the size
matrix becomes small.

The spatiotemporal patterns to be memorized are assu
to be periodic in the present study for ease of analysis.
worth noting that learning rule based on the spike-timin
dependent synaptic plasticity is applicable to a wide clas
spatio-temporal patterns of spike timing. The periodicity
spatiotemporal patterns is not crucial, and it is almost ob
ous that spike trains generated by independent Poisson
cess are also well encoded by use of the time wind
W(Dt). In the case of Poisson process, the firing rate
Poisson process must be adequately low since the refrac
ness of neurons is expected to prevent retrieval of Pois
trains with high firing rate.

It is of interest to consider the effect of noise in th
present model. With the large value ofAIP , neurons obtain
the large size of oscillatory inhibitory electric currentI PP as
described in Fig. 7, and the effect like stochastic resonanc
expected to occur in the presence of noise. The evaluatio
the effect of noise, however, seems to be difficult in t
present scheme of analysis since we are required to calc
the distribution of spike timing of neurons in this evaluatio

With the largeAIP and the shorttPP,1 the basin of attrac-
tors for spatiotemporal patterns are found to be narrow in
present model~data not shown!. In the initial condition, the
inhibitory synaptic electric currentI IP is taken to be the value
of zero. With the shorttPP,1, firing of the first sublattice,
which is induced byI EXT,i , brings about firing of the secon
sublattice immediately since some accumulation of inh
tory synaptic electric currentsI IP is necessary to control th
next firing. For these reasons, the first few firings of sub
tices take place quite rapidly. These rapid firings of sub
tices give rise to too much accumulation of inhibitory ele
tric currentI IP , and then terminate firings of all neurons. T
core of the problem in this phenomenon is too rapid firin
of interneurons. To avoid this problem, more sophistica
modeling of interneurons is needed so as to realize adeq
control of interspike intervals of interneurons. When we
sume that interneurons exhibit periodic firing independen
of pyramidal neurons, the inhibitory synaptic electric curre
I IP takes the form

I IP5AIP(
k

SIP~ t2kTIP!, ~97!

whereTIP represents the period of firings of interneurons. W
can investigate the case of this periodic inhibitory elec
currentI IP following the almost same scheme of the pres
analysis.

Finally, we discuss the biological implication of th
present study. The result of the present study strongly s
gests the possibility of the concept of temporal coding,
which information is assumed to be processed based on s
timing of neurons. The question then arises about where
can find this kind of information processing in a real nervo
06191
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system. It is well known that the hippocampus is the imp
tant tissue for short term memory. In CA3 region of hippo
ampus, we see dense recurrent connections among pyram
neurons, and hence the short term memory is thought to
stored in the CA3 region of hippocampus. Memory stored
hippocampus should be transfered into other regions suc
neocortex so that it is stored as the long term memory.
cently, some experimental results begin to suggest that
memory transfer process takes place when sharp wa
~SPW! appear in hippocampus@58#. In SPW, fast periodic
firings of interneurons (;200 @Hz#) bring about oscillatory
inhibitory synaptic electric currents in pyramidal neuron
and these oscillatory electric currents regulate occasiona
ings of pyramidal neurons@50#. Nádasdyet al. have investi-
gated these occasional firings of pyramidal neurons and
vealed that repeating firing patterns of pyramidal neurons
present in SPW@12#. These results of experiments indica
that spike timing of pyramidal neurons of SPW repres
some kind of memory that should be transfered into neoc
tex. Also in the gamma oscillation, we observe oscillato
inhibitory synaptic electric currents due to periodic firing
interneurons, although its frequency is somewhat l
~20–80@Hz#!. Buzsáki and Chrobak have hypothesized th
the firing patterns of pyramidal neurons in the gamma os
lation are stored in the recurrent connections of the C
region of hippocampus, and then these stored firing patte
are replayed in the firing patterns in SPW in a time co
pressed manner@51#. Our theoretical model explains thi
time compressed replay of firing patterns.

Some aspects of our theoretical model are, however,
biologically implausible. For example, the learning rule~12!
gives either negative or positive synaptic weights by cha
although synaptic weights among pyramidal neurons
found to be positive in experiments. More precise model
of interneurons might be needed to acquire a deeper un
standing of the time compressed replay of firing patter
Solving these problems will be part of our future study.

APPENDIX A: THE HODGKIN-HUXLEY EQUATIONS

The Hodgkin-Huxley equations are the ordinary differe
tial equations with four degrees of freedom, which have be
developed to describe the spike generation of the squ
giant axon @56#. In the present study, for the dynamic
f (v,w1 , . . . ,wn) and gl(v,w1 , . . . ,wn) ( l 51, . . . ,n), we
assume the Hodgkin-Huxley equations of the form

Cmf ~v,w1 , . . . ,w3!5ḡNaw2
3w1~vNa2v !1ḡKw3

4~vK2v !

1ḡL~vL2v !, ~A1!

g1~v,w1 , . . . ,w3!5a1~12w1!2b1w1 , ~A2!

g2~v,w1 , . . . ,w3!5a2~12w2!2b2w2 , ~A3!

g3~v,w1 , . . . ,w3!5a3~12w3!2b3w3, ~A4!

with
3-16



ur
nt

LINEAR STABILITY ANALYSIS OF RETRIEVAL . . . PHYSICAL REVIEW E 66, 061913 ~2002!
a150.01~102v !Y H expS 102v
10 D21J , ~A5!

b150.125 exp~2v/80!, ~A6!

a250.1~252v !Y H expS 252v
10 D21J , ~A7!

b254 exp~2v/18!, ~A8!

a350.07 exp~2v/20!, ~A9!

b351Y H expS 302v
10 D21J , ~A10!

wherev represents the membrane potential, andw1 andw2
the activation and inactivation variables of the sodium c
rent, andw3 the activation variable of the potassium curre
The values of parameters arevNa550 @mV#, vK5

277 @mV#, vL5254.4 @mV#, ḡNa5120 @mS/cm2#, ḡK

536 @mS/cm2#, ḡL50.3 @mS/cm2#, andCm51 @mF/cm2#.
06191
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APPENDIX B: DEFINITION OF THE MATRICES
Aq AND B

From Eqs.~64!, ~80!–~84!, and so on,Aq in Eq. ~86! is
written as

Aq5

¨

2
1

c

]R

]~d t̄ q!
0 . . . 0

2
1

c

]S1

]~d t̄ q!
0 . . . 0

A A A

2
1

c

]Sn

]~d t̄ q!
0 . . . 0

2APPJ̃0qe2(T̃2qT̃/Q)/tPP,1

cQtPP,1~tPP,12tPP,2!
0 . . . 0

APPJ̃0qe2(T̃2qT̃/Q)/tPP,2

cQtPP,2~tPP,12tPP,2!
0 . . . 0

AIPe2(T̃2qT̃/Q)/t IP,1

cQt IP,1~t IP,12t IP,2!
0 . . . 0

2AIPe2(T̃2qT̃/Q)/t IP,2

cQt IP,2~t IP,12t IP,2!
0 . . . 0

©
,

q51, . . . ,Q21. ~B1!

In the same way, we obtainB in Eq. ~86! as
B5

¨

2
1

c

]R

]~d t̄ 0!
1

]R

]~d v̄ !

]R

]~dw̄1!
. . .

]R

]~dw̄n!

2
1

c

]S1

]~d t̄ 0!
1

]S1

]~d v̄ !

]S1

]~dw̄1!
. . .

]S1

]~dw̄n!

A A A

2
1

c

]Sn

]~d t̄ 0!
1

]Sn

]~d v̄ !

]Sn

]~dw̄1!
. . .

]Sn

]~dw̄n!

2APPJ̃00e
2T̃/tPP,1

cQtPP,1~tPP,12tPP,2!
0 . . . 0

APPJ̃00e
2T̃/tPP,2

cQtPP,2~tPP,12tPP,2!
0 . . . 0

AIPe2T̃/t IP,1

cQt IP,1~t IP,12t IP,2!
0 . . . 0

2AIPe2T̃/t IP,2

cQt IP,2~t IP,12t IP,2!
0 . . . 0

C

©
~B2!
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with

C51
]R

]~dI 1!

]R

]~dI 2!

]R

]~dI 3!

]R

]~dI 4!

]S1

]~dI 1!

]S1

]~dI 2!

]S1

]~dI 3!

]S1

]~dI 4!

A A A A

]Sn

]~dI 1!

]Sn

]~dI 2!

]Sn

]~dI 3!

]Sn

]~dI 4!

e2T̃/tPP,1 0 0 0

0 e2T̃/tPP,2 0 0

0 0 e2T̃/t IP,1 0

0 0 0 e2T̃/t IP,2

2 .

~B3!

In our analysis, we have to evaluate the eigenvalues oM
numerically, and hence the numerical evaluation ofAq andB
is required. The coefficients appearing in Eqs.~82! and ~83!
are evaluated in Appendix C. Except forb11, . . . ,b41, ele-
ments inAq and B are determined by use of the values
coefficients obtained in Appendix C, while we s
b11, . . . ,b41 so thatM has the eigenvaluel151 with eigen-
vector ~94!.

APPENDIX C: NUMERICAL EVALUATION OF THE
COEFFICIENTS IN THE FUNCTIONS

R„ˆdT̄q‰,dv̄,ˆdW̄l 8‰,ˆdI s8‰… AND
SL„ˆdT̄q‰,dV̄,ˆdW̄l 8‰,ˆdI s8‰…

In order to evaluate the coefficients in the functio
R@•••# and Sl@•••# ( l 51, . . . ,n), we consider the single
body dynamics of the form

v̇05 f ~v0 ,w01, . . . ,w0n!1 Ĩ 0 , ~C1!

ẇ0l5gl~v,w01, . . . ,w0n!,

l 51, . . . ,n ~C2!

with

Ĩ 05 Ĩ PP,01 Ĩ IP , ~C3!

where
06191
Ĩ PP,05
APP

Q (
q8

J̃0q8SPP@ t2tq8
* ~k!2dtq8~k!#

1$I 1,0* @ t0* ~k!#1dI 1,0@ t0* ~k!#%e2[ t2tq* (k)]/ tPP,1

1$I 2,0* @ t0* ~k!#1dI 2,0@ t0* ~k!#%e2[ t2tq* (k)]/ tPP,2,

t0* ~k!,t,t0* ~k11! ~C4!

and

Ĩ IP5
AIP

Q (
q8

SIP@ t2tq8
* ~k!2dtq8~k!#

1$I 3,0* @ t0* ~k!#1dI 3,0@ t0* ~k!#%e2[ t2tq* (k)]/ t IP,1

1$I 4,0* @ t0* ~k!#1dI 4,0@ t0* ~k!#%e2[ t2tq* (k)]/ t IP,2,

t0* ~k!,t,t0* ~k11!. ~C5!

From Eqs. ~70!–~73!, we obtain the explicit form of
$I s,0* @ t0* (k)#% as follows:

I 1,0* @ t0* ~k!#5
APP

Q (
q8

J̃0q8

e2(T̃2q8T̃/Q)/tPP,1

~tPP,12tPP,2!~12e2T̃/tPP,1!
,

~C6!

I 2,0* @ t0* ~k!#5
APP

Q (
q8

J̃0q8

2e2(T̃2q8T̃/Q)/tPP,2

~tPP,12tPP,2!~12e2T̃/tPP,2!
,

~C7!

I 3,0* @ t0* ~k!#5
AIP

Q (
q8

2e2(T̃2q8T̃/Q)/t IP,1

~t IP,12t IP,2!~12e2T̃/t IP,1!
,

~C8!

I 4,0* @ t0* ~k!#5
AIP

Q (
q8

e2(T̃2q8T̃/Q)/t IP,2

~t IP,12t IP,2!~12e2T̃/t IP,2!
.

~C9!

We solve the dynamics~C1!–~C5! under the condition

v0@ t0* ~k!#5v0* @ t0* ~k!#1dv0@ t0* ~k!#, ~C10!

w0l@ t0* ~k!#5w0l* @ t0* ~k!#1dw0l@ t0* ~k!#,

l 51, . . . ,n. ~C11!

Then, we obtain the functions
v0@ t0* ~k11!#5F„$d t̄ q8~k!%,d v̄0@ t0* ~k!#,$dw̄0l 8@ t0* ~k!#%,$dI s8,0@ t0* ~k!#%…, ~C12!

w0l@ t0* ~k11!#5Gl„$d t̄ q8~k!%,d v̄0@ t0* ~k!#,$dw̄0l 8@ t0* ~k!#%,$dI s8,0@ t0* ~k!#%…, l 51, . . . ,n. ~C13!

It is straightforward to show

R~$d t̄ q%,d v̄,$dw̄l 8%,$dI s8%!5 lim
e→0

F~$ed t̄ q%,ed v̄,$edw̄l 8%,$edI s8%!2v0* @ t0* ~k11!#

e
, ~C14!
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Sl~$d t̄ q%,d v̄,$dw̄l 8%,$dI s8%!5 lim
e→0

Gl~$ed t̄ q%,ed v̄,$edw̄l 8%,$edI s8%!2w0l* @ t0* ~k11!#

e
, l 51, . . . ,n, ~C15!

where 0,ed t̄ 0. The explicit value ofF@•••# andGl@•••# is easily computed by the numerical integration of the dynam
~C1!–~C5!. We obtainR@•••# andSl@•••# by evaluatingF@•••# andGl@•••# for sufficiently smalle.

Once we obtainR@•••# andSl@•••#, we can easily evaluate the coefficients appearing in Eqs.~82! and~83!. For example,
substituting ($0%,1,$0%,$0%) into Eq. ~82!, we have

R~$0%,1,$0%,$0%!5
]R

]~d v̄ !
. ~C16!

Hence,]R/](d v̄) is calculated fromR($0%,1,$0%,$0%), which is computed by Eq.~C14! with sufficiently smalle. In the same
manner, we obtain every coefficient in Eqs.~82! and ~83!.
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Buzsáki, J. Neurosci.19, 9497~1999!.
@13# J.J. Hopfield, Proc. Natl. Acad. Sci. U.S.A.79, 2554~1982!.
@14# D.J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev.

32, 1007~1985!.
@15# D.J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. Le

55, 1530~1985!.
@16# S. Amari, IEEE Trans. Comput.C-21, 1197~1972!.
@17# H. Nishimori, T. Nakamura, and M. Shiino, Phys. Rev. A41,

3346 ~1990!.
@18# H. Sompolinsky and I. Kanter, Phys. Rev. Lett.57, 2861

~1986!.
@19# S. Amari and K. Maginu, Neural Networks1, 63 ~1988!.
@20# J. Phys. A: Math. Gen.22 ~12! ~1989!, special issue in memory

of Elizabeth Gardner.
@21# A.C.C. Coolen and D. Sherrington, Phys. Rev. E49, 1921

~1994!.
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